Warning: file_put_contents(aCache/aDaily/post/neural/--): Failed to open stream: No space left on device in /var/www/tg-me/post.php on line 50
Neural Networks | Нейронные сети | Telegram Webview: neural/9996 -
Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 Kimi-Audio: открытая модель для аудиозадач.

Kimi-Audio — инструктивная модель с 7 млрд. параметров, разработанная командой MoonshotAI, которая объединяет распознавание речи, анализ аудиоконтента и генерацию ответов в реальном времени в единую архитектуру. Модель показала SOTA-результаты на множестве аудиобенчмарков, от распознавания речи до эмоционального анализа.

Архитектура Kimi-Audio — это 3 компонента:

🟢Гибридный токенизатор, который преобразует аудио в дискретные семантические токены (12.5 Гц) через векторное квантование и дополняет их непрерывными акустическими признаками из Whisper.

🟢Модифицированная LLM (на базе Qwen 2.5 7B) с общими слоями для мультимодальных данных и раздельными «головами» для генерации текста и аудио.

🟢Детокенизатор на основе flow matching и BigVGAN. Он превращает токены обратно в звук с задержкой менее секунды благодаря чанковому потоковому декодированию и look-ahead механизму.

Отдельного внимания заслуживает пайплайн обучения, к нему команда разработки подошла ответственно и скрупулезно: 13 млн часов аудио были обработаны через автоматический конвейер, включающий шумоподавление, диаризацию и транскрипцию.

Для повышения качества сегменты объединялись по контексту, а транскрипции дополнялись пунктуацией на основе пауз. После предобучения на задачах ASR и TTS модель прошла этап SFT на 300 тыс. часов данных (развернутые диалоги и аудиочаты).

В тестах ASR Kimi-Audio показала: WER 1.28 на LibriSpeech test-clean против 2.37 у Qwen2.5-Omni. В аудиопонимании она лидирует на ClothoAQA (73.18) и MELD (59.13), а в классификации сцен (CochlScene) показывает 80.99 — на 17 пунктов выше ближайшего соперника. В диалогах модель близка к GPT-4o (3.90 против 4.06 по субъективной оценке).


📌 Лицензирование кода : Apache 2.0 License.

📌 Лицензирование модели: MIT License.


🟡Модель
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #KimiAudio #MoonshotAI
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/neural/9996
Create:
Last Update:

🌟 Kimi-Audio: открытая модель для аудиозадач.

Kimi-Audio — инструктивная модель с 7 млрд. параметров, разработанная командой MoonshotAI, которая объединяет распознавание речи, анализ аудиоконтента и генерацию ответов в реальном времени в единую архитектуру. Модель показала SOTA-результаты на множестве аудиобенчмарков, от распознавания речи до эмоционального анализа.

Архитектура Kimi-Audio — это 3 компонента:

🟢Гибридный токенизатор, который преобразует аудио в дискретные семантические токены (12.5 Гц) через векторное квантование и дополняет их непрерывными акустическими признаками из Whisper.

🟢Модифицированная LLM (на базе Qwen 2.5 7B) с общими слоями для мультимодальных данных и раздельными «головами» для генерации текста и аудио.

🟢Детокенизатор на основе flow matching и BigVGAN. Он превращает токены обратно в звук с задержкой менее секунды благодаря чанковому потоковому декодированию и look-ahead механизму.

Отдельного внимания заслуживает пайплайн обучения, к нему команда разработки подошла ответственно и скрупулезно: 13 млн часов аудио были обработаны через автоматический конвейер, включающий шумоподавление, диаризацию и транскрипцию.

Для повышения качества сегменты объединялись по контексту, а транскрипции дополнялись пунктуацией на основе пауз. После предобучения на задачах ASR и TTS модель прошла этап SFT на 300 тыс. часов данных (развернутые диалоги и аудиочаты).

В тестах ASR Kimi-Audio показала: WER 1.28 на LibriSpeech test-clean против 2.37 у Qwen2.5-Omni. В аудиопонимании она лидирует на ClothoAQA (73.18) и MELD (59.13), а в классификации сцен (CochlScene) показывает 80.99 — на 17 пунктов выше ближайшего соперника. В диалогах модель близка к GPT-4o (3.90 против 4.06 по субъективной оценке).


📌 Лицензирование кода : Apache 2.0 License.

📌 Лицензирование модели: MIT License.


🟡Модель
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #KimiAudio #MoonshotAI

BY Neural Networks | Нейронные сети




Share with your friend now:
tg-me.com/neural/9996

View MORE
Open in Telegram


Neural Networks | Нейронные сети Telegram | DID YOU KNOW?

Date: |

How to Invest in Bitcoin?

Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

Neural Networks | Нейронные сети from jp


Telegram Neural Networks | Нейронные сети
FROM USA